CHEMISTRY OF VISION
 Elmhurst College
Vitamin A Photochemical Events  Chemistry Department
Cis-Trans retinal Cis / Trans Alkenes  Virtual ChemBook

 

 Chemistry of Vision

Vision is such an everyday occurrence that we seldom stop to think and wonder how we are able to see the objects that surround us. Yet the vision process is a fascinating example of how light can produce molecular changes. The retina contain the molecules that undergo a chemical change upon absorbing light, but it is the brain that actually makes sense of the visual information to create an image.
The light image is mapped on the surface of the retina by activating a series of light-sensitive cells known as rods and cones or photoreceptors. The rods and cones convert the light into electrical impulses which are transmitted to the brain via nerve fibers. The brain then determines, which nerve fibers carried the electrical impulse activate by light at certain photoreceptors, and then creates an image.

 The retina is lined with many millions of photoreceptor cells that consist of two types: 7 million cones provide color information and sharpness of images, and 120 million rods are extremely sensitive detectors of white light to provide night vision. The tops of the rods and cones contain a region filled with membrane-bound discs, which contain the molecule cis-retinal bound to a protein called opsin. The resulting complex is called rhodopsin or "visual purple".

The molecule cis-retinal can absorb light at a specific wavelength. When visible light hits the cis-retinal, the cis-retinal undergoes an isomerization, or change in molecular arrangement, to all-trans-retinal. The new form of trans-retinal does not fit as well into the protein, and so a series of geometry changes in the protein begins. The resulting complex is referred to a bathrhodopsin (there are other intermediates in this process, but we'll ignore them for now).

As the protein changes its geometry, it initiates a cascade of biochemical reactions that results in changes in charge so that a large potential difference builds up across the plasma membrane. This potential difference is passed along to an adjoining nerve cell as an electrical impulse. The nerve cell carries this impulse to the brain, where the visual information is interpreted.